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Abstract The article deals with the propagation of axial symmetric cylindrical
surface waves in a cylindrical bore through a micropolar thermoelastic medium of
infinite extent possessing cubic symmetry. The theories of generalized thermoelas-
ticity developed by Lord and Shulman and Green and Lindsay are used to study the
problem. The frequency equations, connecting the phase velocity with the wave num-
ber, radius of bore, and other material parameters for empty and liquid-filled bores
are derived. Some special cases have been deduced. The numerical results obtained
have been illustrated graphically to understand the behavior of the phase velocity and
attenuation coefficient versus the wave number.

Keywords Attenuation coefficient · Cylindrical bore · Generalized thermoelasticity ·
Micropolar · Phase velocity

1 Introduction

In the classical theory of elasticity the microstructure of a material is not taken into
consideration for studying the mechanical behavior of the material due to external
stimuli. But discrepancies are observed in the classical theory and experimental results
while studying the stress concentration in the neighborhood of the holes and cracks,
especially in a material containing laminates, granules, and fibers. The discrepancies
indicate that the material response to external stimuli depends on the motions of inner
structures, and so a study of a micropolar elastic medium is necessary.
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Eringen and Suhubi [1] and Suhubi and Eringen [2] developed a non-linear theory of
microelastic solids and microfluids in which the micromotions of the material particles
contained in a macro-volume element with respect to its centroid are taken into account
in an average sense. Materials affected by such micromotions and microdeformations
are called micromorphic materials.

Eringen [3,4] developed theories for a subclass of micromorphic materials which
are called micropolar media, and these materials show microrotational effects and
microrotational inertia. Here, the material particles in a volume element can undergo
only rigid rotational motions about their center of mass. The motion described here is
not only by a deformation but also by a microrotation giving six degrees of freedom.
The interaction between two parts of a body is transmitted not only by a force but
also by a torque, resulting in asymmetric force stresses and coupled stresses. Physi-
cally, solid propellant grains, polymeric materials, and fiber glass are examples of such
materials. The theory is expected to find applications in the treatment of mechanics
of granular materials, composites fibrous materials, and particularly microcracks and
microfractures.

The dynamical interactions between thermal and mechanical fields in solids has
great practical applications in aeronautics, nuclear reactors, and high energy particle
accelerators. The classical theory of heat conduction predicts an infinite speed of heat
transport, if a material conducting heat is subjected to a thermal disturbance, which
contradicts the physical facts. During the last three decades non-classical theories have
been developed to remove this paradox.

The generalized theory of thermoelasticity was developed by Lord and Shulman [5]
involving one relaxation time for isotropic homogeneous media, which is called the
first generalization to the coupled theory of elasticity. These equations determine the
finite speeds of propagation of heat and displacement distributions; the corresponding
equations for the anisotropic case were obtained by Dhaliwal and Sherief [6].

The second generalization to the coupled theory of elasticity is what is known as
the theory of thermoelasticity, with two relaxation times or the theory of temperature-
dependent thermoelasticity. A generalization of this inequality was proposed by Green
and Laws [7]. Green and Lindsay [8] obtained an explicit version of the constitutive
equations. These equations were also obtained independently by Suhubi [9]. This the-
ory contains two constants that act as relaxation times and modify not only the heat
equations, but also all the equations of the coupled theory. The classical Fourier’s law
of heat conduction is not violated if the medium under consideration has a center of
symmetry.

The linear theory of micropolar thermoelasticity was developed by Nowacki [10]
and Eringen [11] by extending the theory of micropolar continua to include ther-
mal effects. Tauchert et al. [12] also derived the basic equations of the linear theory of
micropolar thermoelasticity. Dost and Tabarrok [13] presented micropolar generalized
thermoelasticity by using the Green–Lindsay theory. Chandrasekhariah [14] formu-
lated a theory of micropolar thermoelasticity which includes a heat flux, among the
constitutive variables.

The propagation of waves in thermoelastic micropolar materials has many appli-
cations in various fields of science and technology, namely, atomic physics, industrial
engineering, thermal power plants, submarine structures, pressure vessels, aerospace,
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chemical pipes, and metallurgy. The importance of thermal stresses in causing
structural damages and changes in functioning of the structure is well recognized
whenever thermal stress environments are involved.

A cubic anisotropic medium possess three independent elastic constants compared
to two for isotropic media which are often assumed in classical elasticity. One result
of the additional constant is a coupling of terms in the Navier equations for a cubic
medium. A wide class of crystals such as W, Si, Cu, Ni, Fe, Au, and Al, which are
frequently used substances, belong to the cubic materials. The cubic materials have
nine planes of symmetry whose normals are on the three co-ordinate axes and on
the co-ordinate planes making an angle of π/4 with the co-ordinate axes. With the
chosen co-ordinate system along the crystalline directions, the mechanical behavior
of a micropolar cubic crystal can be characterized by four independent elastic con-
stants.

The problem of propagation of waves along a cylindrical bore embedded in an infi-
nite micropolar thermoelastic medium possessing cubic symmetry is of great impor-
tance due to its manifold applications. In practice, the cylindrical bore may be realized
by a borehole or a mine gallery. Borehole studies are of great interest in exploration
seismology, e.g., in the exploration of oils, gases, hydrocarbons, etc. In the oil industry,
acoustic borehole logging is commonly practiced. A borehole is drilled in a potential
hydrocarbon reservoir and then probed with an acoustic tool. Almost all oil companies
rely on seismic interpretation for selecting the sites for exploratory oil wells. Seismic
wave methods also have higher accuracy, higher resolutions, and are more economical
as compared to drilling which is costly and time consuming.

Tomar and Kumar [15], Deswal et al. [16], and Kumar et al. [17] studied problems
of wave propagation through a cylindrical bore in a micropolar elastic medium with a
stretch and micropolar elastic medium.

In the present article we have discussed the propagation of surface waves near a
cylindrical bore hole through a micropolar generalized thermoelastic medium pos-
sessing cubic symmetry. Frequency equations relating the phase velocity and wave
number are derived for an empty as well as for a liquid-filled bore. The dispersion
curves giving the phase velocity and attenuation coefficient as functions of the wave
number are plotted for different values of the radius for an anisotropic as well as for
an isotropic case.

2 Basic Equations

Following Passarella [18] and Green and Lindsay [8], the constitutive relations and
balance laws in a generalized thermomicropolar anisotropic medium possessing a
center of symmetry, in the absence of body forces and body couples are given by
Constitutive relations:

ti j = Ci jkl Ekl + Gi jkl�kl + Ai j

(
1 + t1

∂

∂t

)
T,

mi j = Gkl ji Ekl + � j ikl�kl + Gi j

(
1 + t1

∂

∂t

)
T,
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ρη = −Ai j Ei j − Gi j�i j + ρCe

T0
T,

t0q̇i = Ki j T, j − qi.

The deformation and wryness tensor are defined by

E ji = ui, j + εi jkφk, �i j = φi, j . (1)

Balance laws:

ti j, j = ρüi ,

mi j, j − εirs trs = ρ j φ̈i ,

qi,i = ρT0η̇, (2)

where ti j , mi j , and Ki j are, respectively, the stress tensor, couple stress tensor, and
thermal conductivity tensor, qi is the heat flux vector, η is the entropy, T is the
absolute temperature, Ce is the specific heat at constant strain, t0 and t1 are ther-
mal relaxation times, ρ is the bulk mass density, j is the microinertia, and ui , φi

are, respectively, the components of the displacement vector and microrotation vector.
Ci jkl , Gi jkl , �i jkl , Ai j , and Gi j are characteristic constants of the material following
the symmetry properties given by Passarella [18].

3 Problem Formulation and Its Solution

We have used appropriate transformations, following Atanackovic et al. [19], on the
set of Eqs. 1 to derive equations for a generalized micropolar thermoelastic medium
possessing cubic symmetry. We consider a cylindrical bore of radius a having a circular
cross-section in a generalized micropolar thermoelastic medium possessing cubic sym-
metry. We use cylindrical polar coordinates (r, θ, z) with the z-axis pointing upward
along the axis of the cylinder. The propagation of axial symmetric waves is considered
near the borehole, and these waves are the analog of Rayleigh waves propagating at a
traction free boundary of a generalized micropolar thermoelastic medium possessing
cubic symmetry. This section deals with the situation when the bore does not con-
tain any fluid. We are discussing a two-dimensional problem with symmetry about the
z-axis, so all partial derivatives with respect to the variable θ would be zero. Therefore,
we take �u = (ur , 0, uz), �φ = (0, φθ , 0), and ∂/∂θ ≡ 0, so that all the field equations
and constitutive relations in cylindrical polar coordinates reduce to

∂trr

∂r
+ ∂tzr

∂z
+ trr − tθθ

r
= ρ

∂2ur

∂t2 , (3)

∂tr z

∂r
+ ∂tzz

∂z
+ tr z

r
= ρ

∂2uz

∂t2 , (4)

∂mrθ

∂r
+ ∂mzθ

∂z
+ mrθ + mθr

r
+ tzr − tr z = ρ j

∂2φθ

∂t2 , (5)
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K1

(
∂2T

∂t2 + 1

r

∂T

∂r
+ ∂2T

∂z2

)
= ρCe

(
1 + t0

∂

∂t

)
Ṫ

+ νT0

(
1 + t0n0

∂

∂t

) (
∂ u̇r

∂r
+ u̇r

r
+ ∂ u̇z

∂z

)
, (6)

trr = C11
∂ur

∂r
+ C12

(
∂uz

∂z
+ ur

r

)
− ν

(
1 + t1

∂

∂t

)
T, (7)

tr z = C44

(
∂uz

∂r
+ φθ

)
+ C45

(
∂ur

∂z
− φθ

)
, (8)

tzr = C44

(
∂uz

∂r
− φθ

)
+ C45

(
∂ur

∂z
+ φθ

)
, (9)

tθθ = C12

(
∂ur

∂r
+ ∂uz

∂z

)
+ C11

ur

r
− ν

(
1 + t1

∂

∂t

)
T, (10)

tzz = C12

(
∂ur

∂r
+ ur

r

)
+ C11

∂uz

∂z
− ν

(
1 + t1

∂

∂t

)
T, (11)

mrθ = �44
∂φθ

∂r
− �45

φθ

r
, (12)

mθr = �45
∂φθ

∂r
− �44

φθ

r
, (13)

mzθ = �44
∂φθ

∂z
. (14)

where Ai j = −νδi j , ν = (C11 + 2C12)αT , and αT is the coefficient of linear thermal
expansion; we have used the notations 11 → 1, 22 → 2, 12 → 4, 21 → 5 for the
material constants.

For the Lord and Shulman (L–S) theory, t1 = 0, n0 = 1, and for the Green and
Lindsay (G–L) theory, t1 > 0, n0 = 0. The thermal relaxation times t0 and t1 satisfy
the inequality t1 ≥ t0 > 0 for the G–L theory only. However, it has been proved by
Sturnin [20] that the inequalities are not mandatory for t0 and t1 to follow.

For further considerations, it is convenient to introduce dimensionless variables
defined by

{r ′, z′} = 1

a
{r, z}, {u′

r , u′
z} = ρω1c1

νT0
{ur , uz}, φ′

θ = ρc2
1

νT0
φθ , t ′i j = ti j

νT0
,

m′
rθ = ω1

c1νT0
mrθ , T ′ = T

T0
, c2

1 = C11

ρ
, {t ′, t ′0, t ′1} = c1

a
{t, t0, t1},

ω1 = ρCec2
1

K1
(15)

Using dimensionless variables defined by Eq. 15, in Eqs. 3–6 with the help of
Eqs. 7 –14, after suppressing the primes, the field equations in cylindrical coordinates
reduce to
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(
∂2ur

∂r2 + 1

r

∂ur

∂r
− ur

r2

)
+ a1

∂2ur

∂z2 + a2
∂2uz

∂r∂z
− a3

∂φθ

∂z
− a4

(
1 + t1

∂

∂t

)
∂T

∂r

= ∂2ur

∂t2 , (16)

a1

(
∂2uz

∂r2 + 1

r

∂uz

∂r

)
+ ∂2uz

∂z2 + a2

(
∂2ur

∂r∂z
+ 1

r

∂ur

∂z

)
+ a3

(
∂φθ

∂r
+ φθ

r

)

− a4

(
1 + t1

∂

∂t

)
∂T

∂z
= ∂2uz

∂t2 , (17)

∂2φθ

∂r2 + ∂2φθ

∂z2 + 1

r

∂φθ

∂r
− φθ

r2 + a5

(
∂ur

∂z
− ∂uz

∂r

)
− 2a6φθ = a7

∂2φθ

∂t2 , (18)

∇2T = a8(Ṫ + t0T̈ ) + ε

(
u̇r

r
+ ∂ u̇r

∂r
+ ∂ u̇z

∂z
+ t0n0

(
ür

r
+ ∂ ür

∂r
+ ∂ üz

∂z

))
, (19)

a1 = C44

C11
, a2 = C12 + C45

C11
, a3 = aω1(C44 − C45)

c1C11
, a4 = aρω1c1

C11
,

a5 = ac1(C44 − C45)

ω1�44
, a6 = a2(C44 − C45)

ω1�44
, a7 = ρ jc2

1

�44
, a8 = ρCeac1

K1
,

ε = ν2T0

ρω1 K1
. (20)

Assuming the solutions of Eqs. 16–19 for the waves propagating in the z-direction as

{ur , uz, φθ , T } = {b1 K1(mr), b2 K0(mr), b3 K1(mr), b4 K0(mr)}ei(kz−ωt) (21)

where K0(), K1() are, respectively, the modified Bessel functions of order zero and
one and of the second kind, ω(= kc) is the angular velocity of the wave, k is the wave
number, and c is the phase velocity.

Substituting Eq. 21 into Eqs. 16–19, we obtain a system of four homogeneous linear
equations in four unknowns b1, b2, b3, and b4;

(m2 − a1k2 + ω2)b1 − ika2mb2 − ika3b3 + a4(1 − iωt1)mb4 = 0,

−ika2mb1 + (a1m2 − k2 + ω2)b2 − a3mb3 − a4(1 − iωt1)ikb4 = 0,

ika5b1 + a5mb2 + (−m2 − k2 − 2a6 + a7ω
2)b3 + 0.b4 = 0,

−εiωm(1 − iωt0n0)b1 − εωk(1 − iωt0n0)b2 + 0.b3

+(m2 − k2 + iωa8 + a8ω
2)b4 = 0. (22)

For the non-trivial solution of Eq. 22, the determinant of coefficients of b1, b2, b3, and
b4 must vanish, which gives

m8 + Am6 + Bm4 + Cm2 + D = 0, (23)
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where

A = − 1

a1
(−a1(ω

2 − a1k2) + a1a9 − (ω2 − k2) + a3a5 − k2a2
2 .

− a1a4iωε(1 − iωt1)(1 − iωt0n0)),

B = − 1

a1
{(ω2 − a1k2)(a1a9 − ω2 + k2 + a3a5) + a1a10 + (ω2 − k2)a9

+ k2a2
2a9 − 2k2a2a3a5 + a11 + k2a1a3a5 + (1 − iωt0n0)(1 − iωt1)

× (−ik2a2a4ωε + iωεa3a4a5 − iωk2a2a4ε − a1a4iωε(k2 + 2a6 − a7ω
2)

− a4iωε(ω2 − k2))},
C = − 1

a1
{(ω2 − a1k2)(a1a10 + (ω2 − k2)a9 + a11) + (1 − iωt0n0)(1 − iωt1)

× (−2ik2a3a4a5εω − (k2 + 2a6 − a7ω
4)(iωεk2a2a4 + iωεa4(ω

2 − k2)))

+ (ω2 − k2)a10 − a12 + k2a2
2a10 − k2a3a5(a8ω

2 − k2 + iωa8)(a1 + a2)},
D = − 1

a1
{(ω2 − a1k2)((ω2 − k2)a10 − a12) + iωε(1 − iωt0n0)(1 − iωt1)

× (k2a2a4(a7ω
2 − k2 − 2a6) + k4a3a4a5) − k2a3a5(a2 + ω2 − k2)

× (a8ω
2 + iωa8 − k2)},

a9 = a7ω
2 − 2a6 − iωa8 − a8ω

2,

a10 = k4 + 2a6k2 − (a7 + a8)ω
2k2 − iωa8k2 − 2iωa6a8 + iω3a7a8

− 2a6a8ω
2 + a7a8ω

4,

a11 = a3a5(a8ω
2 + iωa8 − k2) + iωεk2a4(1 − iωt0n0)(1 − iωt1),

a12 = iωεk2a4(1 − iωt0n0)(1 − iωt1)(a7ω
2 − k2 − 2a6).

The roots of Eq. 23 are complex in general. These roots are denoted by m2
i , i =

1, . . . , 4. Corresponding to these roots, the waves with amplitudes b1, b2, b3, and b4
which are designated by b1(i), b2(i), b3(i), and b4(i). These are given by

b1(i) = �1(i)

�(i)
, b2(i) = �2(i)

�(i)
, b3(i) = �3(i)

�(i)
, b4(i) = �4(i)

�(i)
,

where

�1(i) = −a1m6
i +

(
a1a9 − ω2 + k2 + a3a5

)
m4

i +
(

a1a10 +
(
ω2 − k2

)
a9 + a11

)

× m2
i − a12 + a10(ω

2 − k2),

�2(i) = −ika2mi

(
−m4

i + a9m2
i + a10

)
+ ika3a5mi (m

2
i − k2 + iωa8 + a8ω

2)

+ εωkmi a4(1 − iωt0n0)(1 − iωt1)
(
−m2

i − k2 − 2a6 + a7ω
2
)

,

�3(i) = ka4a5εω(1 − iωt0n0)(1 − iωt1)
(

m2
i − k2

)
+

(
m2

i − k2 + iωa8 + a8ω
2
)

×
(
−ika5(a1 + a2)m

2
i − k2 + ω2

)
,
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�4(i) = iωε(1 − iωt0n0)mi (−a3a5(m
2
i − k2) + (m2

i + k2+2a6 − a7ω
2)

× (a1m2
i +k2a2 − k2+ω2)).

�(i) =
√

(�1(i))2 + (�2(i))2 + (�3(i))2 + (�4(i))2. (24)

Thus, the appropriate solutions of Eqs. 16–19, corresponding to the wave propagating
along the z-axis, are

{ur , uz, φθ , T } =
4∑

j=1

{
b1( j)K1(m jr) + b2( j)K0(mir) + b3( j)K1(m jr)

+ b4( j)K0(m jr)
}

f ( j)ei(kz−ωt), (25)

where f ( j) are relative excitation factors.

3.1 Derivation of Frequency Equation

At the interface r = 1, the appropriate boundary conditions are

trr = 0, tr z = 0, mrθ = 0,
∂T

∂r
= 0, (26)

where trr and tr z are the radial and tangential stress components, respectively, and
mrθ is the torsional coupled stress. Making use of Eq. 25 in Eqs. 7, 8, and 12 and then
using boundary conditions, Eqs. 26, we obtain four homogeneous equations in four
unknowns f ( j), j = 1, . . . , 4, elimination of which gives the frequency equation,

H1�
′ − H2�

′′ + H3�
′′′ − H4�

′′′′ = 0, (27)

where

�′ = P2(S3 M4 − S4 M3) − P3(S2 M4 − S4 M2) + P4(S2 M3 − S3 M2),

�′′ = P1(S3 M4 − S4 M3) − P3(S1 M4 − S4 M1) + P4(S1 M3 − S3 M1),

�′′′ = P1(S2 M4 − S4 M2) − P2(S1 M4 − S4 M1) + P4(S1 M2 − S2 M1),

�′′′′ = P1(S2 M3 − S3 M2) − P2(S1 M3 − S3 M1) + P3(S1 M2 − S2 M1),

where

Hi = −{s1b1(i)mi + s2k2b2(i) + (1 − iωt0)b4(i)}K0(mi ) + (s2 − s1)b1(i)K1(mi ),

Pi = {−s3b2(i)mi + iks4b1(i) + s5b3(i)} K1(mi ),

Si = −s6b3(i)K0(mi ) − (s6 + s7)b3(i)K1(mi ), Mi = −mi b4(i)K1(mi ),
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s1 = C11

aρω1c1
, s2 = C12

aρω1c1
, s3 = C44

aρω1c1
, s4 = C45

aρω1c1
,

s5 = C44 − C45

ρc2
1

, s6 = �44Ce

ac1 K1
, s7 = �45Ce

ac1 K1
.

Equation 27 determines the dimensionless phase velocity c of axial symmetric surface
waves as a function of the dimensionless wave number k and other thermomicropolar
parameters of the medium.

4 Propagation of Waves in a Cylindrical Bore Filled with Liquid

Here, we consider the same problem as in the previous section with the additional
constraint that the borehole is filled with a homogeneous inviscid liquid. The field
equation and constitutive relations for a homogeneous inviscid liquid are

λL∇
(
∇ · �uL

)
= ρL ∂2 �uL

∂t2 , (28)

tL
i j = λL

(
∇ · �uL

)
δi j , (29)

where �uL is the displacement vector and λL and ρL are, respectively, the bulk modulus
and density of the liquid. Other symbols have their usual meaning as defined earlier.
For a two-dimensional problem, we take

�uL =
(

uL
r , 0, uL

z

)
, and

∂

∂θ
= 0. (30)

The dimensionless variables defined in this case, in addition to those defined by Eqs. 15,
are

uL′
r =

(
ρω1c1

νT0

)
uL

r , uL′
z =

(
ρω1c1

νT0

)
uL

z , tL′
rr = tL

rr

νT0
. (31)

We relate the dimensionless displacement components and potential function φL as

uL
r = ∂φL

∂r
, uL

z = ∂φL

∂z
. (32)

Making use of Eq. 32 in Eqs. 28 and 29, with the help of Eqs. 30 and 31, after sup-
pressing the primes, yields

∇2φL = δ2
1
∂2φL

∂t2 , (33)
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and

tL
rr = λL

aρω1c1
∇2φL, (34)

where

δ1 = c1

cL , cL =
√

λL

ρL . (35)

The solution of Eq. 14 corresponding to surface waves may be written as

φL = A0 I0(m0r)ei(kz−ωt). (36)

After some simplification, the pressure and radial displacement of the liquid are given
by

pL = −tL
rr = s8ω

2 A0 I0(m0r)ei(kz−ωt), (37)

uL
r = m0 A0 I1(m0r)ei(kz−ωt), (38)

where

s8 = λLδ2
1

aρω1c1
, m2

0 = k2
(

1 − δ2
1c2

)
, (39)

and I0(), I1() are modified Bessel functions of the first kind and of order zero and one,
respectively.

4.1 Derivation of Frequency Equation

The appropriate boundary conditions for the present situation are

trr = −pL, tr z = 0, mrθ = 0,
∂T

∂r
= 0, ur = uL

r , at r = 1. (40)

Making use of Eqs. 36–38 and 25 in the boundary conditions of Eqs. 40, and with the
help of Eqs. 7, 8, and 12, we obtain five homogeneous equations in five unknowns
A0, f (1), f (2), f (3), and f (4). The condition for the non-trivial solution yields the
frequency equation as

s8ω
2 I0(m0)

{−b1(1)K1(m1)�
′ + b1(2)K1(m2)�

′′ − b1(3)K1(m3)�
′′′

+ b1(4)K1(m4)�
′′′′} − m0 I1(m0)

{
H1�

′ − H2�
′′ + H3�

′′′ − H4�
′′′′} = 0.

(41)
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5 Special Cases

Case 1 The corresponding expressions of frequency equations are obtained,

(a) for the L–S theory, by taking t1 = 0 and n0 = 1,

(b) for the G–L theory, by taking t1 ≥ t0 > 0, n0 = 0,

in Eqs. 27 and 41 along with the changed values of mi,(i = 0, 1, . . . , 4).

Subcase: Neglecting the thermal effect, our results agree with those obtained by
Banerji and Sengupta [21,22] by changing dimensionless quantities into physical
quantities.

Case 2 Taking C11 = λ + 2µ + κ, C12 = λ, C44 = µ + κ, C45 = µ,�44 =
γ, �45 = β, in Eqs. 27 and 41, we obtain the corresponding expressions for an isotro-
pic micropolar generalized thermoelastic medium with the changed values of mi , (i =
0, 1, . . . , 4).

6 Numerical Results and Discussion

For numerical computation, we take the following values of relevant parameters for a
micropolar thermoelastic medium possessing cubic symmetry as

C11 = 18 × 1010 N · m−2, C12 = 11.7 × 1010 N · m−2, C44 = 5.6 × 1010 N · m−2,

C45 = 4.3 × 1010 N · m−2, �44 = 1.88 × 10−9 N, �45 = 0.7 × 10−9 N.

For comparison with an isotropic micropolar thermoelastic solid, following Eringen
[23] and Dhaliwal and Singh [24], we take the following values of relevant parameters
for the case of a magnesium crystal-like material as

ρ = 1.74 × 103 kg · m−3, λ = 9.4 × 1010 N · m−2, µ = 4.0 × 1010 N · m−2,

κ = 1.0 × 1010 N · m−2, γ = 0.779 × 10−9 N, j = 0.2 × 10−19 m2,

Ce = 1.04 × 103 J · kg−1 ·◦ C−1

The dimensionless relaxation times are taken as

(i) for L–S theory: t0 = 0.2, t1 = 0.0,

(ii) for G–L theory: t0 = 0.2, t1 = 0.6.

For the dimensionless coupling constant, ε, we have taken the hypothetical value
0.073. Equations 27 and 41 determine the phase velocity, c, of the axial symmetric
surface waves as a function of the wave number k, the radius of the bore, and various
physical parameters in complex form. If we write

1

c
= 1

v
+ i

q

ω
, (42)
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then the wave number k = R + iq, where R = ω/v and q are real numbers. This
shows that v is the propagation speed and q is the attenuation coefficient of the surface
waves (Fig. 1).

In Figs. 2–9, the graphical representation is given for two values of a dimensionless
radius of the bore, a = 1 and a = 5 for comparison between an isotropic micropolar
thermoelastic solid and a micropolar thermoelastic cubic crystal-like materials. The
curves with dense horizontal lines and sparse horizontal lines represent variations
for a = 1 and a = 5, respectively, for the isotropic case whereas the curves with a
dense net and a sparse net represent variations for a = 1 and a = 5, respectively,
for the anisotropic case. Figures 10–13 give the graphical representation for a = 1

rr
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Fig. 1 Geometry of the investigated problem
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Fig. 2 Variation of phase velocity with respect to wave number for L–S theory in empty bore
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Fig. 3 Variation of attenuation coefficient with respect to wave number for L–S theory in empty bore
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Fig. 4 Variation of phase velocity with respect to wave number for L–S theory in liquid-filled bore
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Fig. 5 Variation of attenuation coefficient with respect to wave number for L–S theory in liquid-filled bore
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Fig. 6 Variation of phase velocity with respect to wave number for G-L theory in empty bore
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Fig. 7 Variation of attenuation coefficient with respect to wave number for G-L theory in empty bore
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Fig. 8 Variation of phase velocity with respect to wave number for G–L theory in liquid-filled bore
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Fig. 9 Variation of attenuation coefficient with respect to wave number for G-L theory in liquid-filled bore
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Fig. 10 Variation of phase velocity with respect to wave number for L–S theory in case of empty and
liquid-filled bores for fixed radius

for comparison between variations for empty and liquid-filled bores. In these figures
the curves with dense horizontal lines and sparse horizontal lines represent, respec-
tively, the variations for empty and liquid-filled bores for the isotropic case whereas
the curves with a dense net and a sparse net represent, respectively, the variations for
empty and liquid-filled bores for the anisotropic case.

Figures 2 and 3 depict the variations of the phase velocity and attenuation coeffi-
cient with respect to R, i.e, the real part of the wave number for the L–S theory for
the case of an empty bore whereas Figs. 4 and 5 represent the same situation for the
case of a liquid-filled bore. Figures 6 and 7 depict the variations of the phase velocity
and attenuation coefficient with respect to R, for the G–L theory for the case of an
empty bore whereas Figs. 8 and 9 represent the same situation for the case of a liquid-
filled bore. Figures 10 and 11 give the variation of the phase velocity and attenuation
coefficient with respect to R, for empty and liquid-filled bores for the case of the L–S
theory whereas Figs. 12 and 13 represent the same situation for the case of the G–L
theory.

From Figs. 2, 4, 6, 8, and 12, it is observed that the phase velocity of wave propa-
gation starts from a large value at a vanishing wave number and then exhibits strong
dispersion at a higher wave number and ultimately attains a constant value. It is evident
from Figs. 2, 4, and 6 that at initial values of the wave number and for a = 1, the
anisotropic effect decreases the value of the phase velocity whereas the behavior is
reversed for a = 5. Also, for the range 1 < R < 3, the values of the phase velocity
are higher for a smaller radius for the isotropic case whereas the behavior is reversed
for the anisotropic case. Within the range 3 < R < 7, the values of the phase velocity
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Fig. 11 Variation of attenuation coefficient with respect to wave number for L–S theory in case of empty
and liquid-filled bores for fixed radius

Fig. 12 Variation of phase
velocity with respect to wave
number for G–L theory in case
of empty and liquid-filled bores
for fixed radius
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Fig. 13 Variation of attenuation
coefficient with respect to wave
number for G–L theory in case
of empty and liquid-filled bores
for fixed radius
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are higher for a = 5 as compared to those for a = 1. At higher values of the wave
number, all curves tend to attain constant values. In Figs. 10 and 12, the behavior and
trend of variations of curves of the phase velocity is similar for empty and liquid-filled
bores, but within the range 1 < R < 4, values of the phase velocity are higher for the
isotropic case as compared to those for the anisotropic case.

Unlike the phase velocity, the attenuation coefficient increases with R. It is observed
from Figs. 3, 5, and 7 that within the ranges 1 < R < 7 and R > 10, the values of
the attenuation coefficient are higher for a = 5 than those for a = 1 for the isotro-
pic case whereas the behavior is reversed for the anisotropic case. Within the range
7 < R < 10, the curves show mixed behavior. Also, for R > 15, the values of the
attenuation coefficient are higher for the anisotropic case as compared to those for
the isotropic case. From Figs. 11 and 13, it is observed that the trend of variation of
curves for empty and liquid-filled bores is almost similar, although magnitude values
are slightly different.

However, within the range 1 < R < 10, the values of the attenuation coefficient
are higher for the isotropic case whereas the behavior is reversed for R > 10.

7 Conclusions

In this article, the Bessel function with complex arguments has been used to study
wave propagation in a micropolar generalized thermoelastic medium possessing cubic
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symmetry. The phase velocity of the wave propagation has been computed from Eqs. 27
and 41 for different values of the wave number and for different boundary conditions. It
is observed from all the graphs that the phase velocity decreases with the wave number
and tends to attain a constant value at a higher wave number whereas the attenuation
coefficient increases with the wave number. It is concluded that anisotropy has a sig-
nificant impact on the phase velocity as well as on the attenuation coefficient.
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